

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

20

A Comparative Study on the Performance

of the Top DBMS Systems

Youssef Bassil

LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

Abstract

Database management systems are today’s most reliable mean to organize data into collections that can be searched and

updated. However, many DBMS systems are available on the market each having their pros and cons in terms of reliability,

usability, security, and performance. This paper presents a comparative study on the performance of the top DBMS systems.

They are mainly MS SQL Server 2008, Oracle 11g, IBM DB2, MySQL 5.5, and MS Access 2010. The testing is aimed at

executing different SQL queries with different level of complexities over the different five DBMSs under test. This would pave

the way to build a head-to-head comparative evaluation that shows the average execution time, memory usage, and CPU

utilization of each DBMS after completion of the test.

Keywords

DBMS, Performance Study, SQL Server, MySQL, Oracle, DB2, Access

1. Introduction

DBMS short for database management system plays a major role in most real-world projects that require

storing, retrieving, and querying digital data. For instance, dynamic websites, accounting information systems,

payroll systems, stock management systems all rely on internal databases as a container to store and manage

their data [1]. Many software development firms are today developing and producing DBMS systems that cost

between zero dollars in case of free and open-source DBMSs, and thousands of dollars in case of proprietary

DBMSs. In particular, each DBMS is characterized by a set of diverse functional and non-functional features

and specs each having their advantages and disadvantages. One of which is performance which determines how

fast a DBMS can process and execute queries. This paper presents a comparative study from a performance

perspective between five different DBMSs available today on the market. They are namely MS SQL Server

2008 [2], Oracle 11g [3], IBM DB2 [4], MySQL 5.5 [5], and MS Access 2010 [6]. For this reason, several SQL

queries with different level of complexities were crafted and tested against all these well-known DBMSs.

Additionally, a performance benchmark was used to measure the execution time of every executed SQL query,

in addition to CPU utilization, memory usage, virtual memory usage, and threads count. In due course, a head-

to-head comparison was drawn, which exhibits the differences in performance between the different DBMSs

under test.

2. Background

This section discusses the history, versions, and features of the different DBMSs under test. They are

respectively MS SQL Server 2008, Oracle 11g, IBM DB2, MySQL 5.5, and MS Access 2010.

2.1. MS SQL Server 2008

Microsoft SQL Server is a relational database management system (RDBMS) produced by Microsoft. Its

primary query language is Transact-SQL, an implementation of the ANSI/ISO standard Structured Query

Language (SQL) used by both Microsoft and Sybase. Microsoft SQL Server supports atomic, consistent,

isolated, and durable transactions. It includes support for database mirroring and clustering. An SQL server

cluster is a collection of identically configured servers, which help distribute the workload among multiple

servers. SQL server also supports data partitioning for distributed databases, in addition to database mirroring

which allows the creation of mirrors of database contents, along with transaction logs, on another instance of

SQL Server, based on certain predefined triggers [7].

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Transact-SQL
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Sybase
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

21

2.2. Oracle 11g

Oracle Database (commonly referred to as Oracle RDBMS or simply as Oracle), is a relational database

management system (RDBMS) released by Oracle Corporation, and it comprises at least one instance of the

application, along with data storage. An instance comprises a set of operating system processes and memory

structures that interact with the storage. In addition to storage, the database consists of online redo logs which

hold the transactional history. Processes can in turn archive the online redo logs into archive logs, which provide

the basis for data recovery and for some forms of data replication. The Oracle RDBMS stores data logically in

the form of table-spaces and physically in the form of data files. At the physical level, data files comprise one or

more data blocks, where the block size can vary between data files. Oracle features data dictionary, indexes, and

clusters. Versions Subsequent to 10g, introduced grid computing capabilities in which an instance application

can use CPU resources from another node in the grid [8].

2.3. IBM DB2

DB2 is one of IBM's lines of relational database management system which runs on Unix, Windows, or Linux

server machines. DB2 can be administered from either a command-line or a GUI interface. The command-line

interface requires more knowledge of the product but can be more easily scripted and automated. The GUI is a

multi-platform Java client that contains a variety of wizards suitable for novice users. DB2 supports both SQL

and XQuery. DB2 has native implementation of XML data storage, where XML data is stored as XML for faster

access using XQuery. DB2 also supports integration into the Eclipse and Visual Studio .NET integrated

development environments. An important feature of DB2 DBMS is the error processing in which SQL

communications area structure is used within the DB2 program to return error information to the application

program after every API call for an SQL statement [9].

2.4. MySQL 5.5

MySQL is a free, open-source, multithreaded, and multi-user SQL database management system which has

more than 10 million installations. The basic program runs as a server providing multi-user access to a number

of databases. MySQL includes a broad subset of ANSI SQL 99, as well as extensions, cross-platform support,

stored procedures, triggers, cursors, updatable views, and X/Open XA distributed transaction processing

support. Moreover, it supports two phase commit engine, independent storage engines, SSL support, query

caching, replication with one master per slave, many slaves per master, embedded database library, and ACID

compliance using the InnoDB cluster engines [10].

2.5. MS Access 2010

Microsoft Office Access, previously known as Microsoft Access, is a relational database management system

from Microsoft which combines the relational Microsoft Jet Database Engine with a graphical user interface and

software development tools. It is a member of the 2010 Microsoft Office system. One of the benefits of Access

from a programmer's perspective is its relative compatibility with SQL queries. Unlike a complete RDBMS, the

Jet Engine lacks database triggers and stored procedures. Notwithstanding, it provides a special syntax that

allows creating queries with parameters, in a way that looks like creating stored procedures, but these

procedures are limited to one statement per procedure. Microsoft Access does allow forms to contain code that

is triggered as changes are made to the underlying table, and it is common to use pass-through queries and other

techniques in Access to run stored procedures in RDBMSs that support these. MS Access is used by small

businesses, within departments of large corporations, and by hobby programmers to create ad hoc customized

desktop systems for handling the creation and manipulation of data. Some professional application developers

use Access for rapid application development, especially for the creation of prototypes and standalone

applications that serve as tools for on-the-road salesmen [11].

3. Testing and Evaluation

3.1. DBMSs under Test

There are typically five DBMSs under test, four of which are client/server DBMSs, suitable for building

medium and large scale databases, and one standalone DBMS suitable for creating small scale ad-hoc databases.

They are respectively MS SQL Server 2008, Oracle 11g, IBM DB2, MySQL 5.5, and MS Access 2010. MS

Access is the only non-client/server DBMS.

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Memory_%28computers%29
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Archive
http://en.wikipedia.org/wiki/Data_recovery
http://en.wikipedia.org/wiki/Data_replication
http://en.wikipedia.org/wiki/Physical_and_logical_storage
http://en.wikipedia.org/wiki/Tablespace
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Block_size_%28data_storage_and_transmission%29
http://en.wikipedia.org/wiki/Data_dictionary
http://en.wikipedia.org/wiki/Index_%28database%29
http://en.wikipedia.org/wiki/Cluster
http://en.wikipedia.org/wiki/Grid_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Eclipse_%28computing%29
http://en.wikipedia.org/wiki/Visual_Studio_.NET
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Computer_programs
http://en.wikipedia.org/wiki/Application_program
http://en.wikipedia.org/wiki/Application_program
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Multi-user
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Stored_procedure
http://en.wikipedia.org/wiki/Database_trigger
http://en.wikipedia.org/wiki/Cursor_%28databases%29
http://en.wikipedia.org/wiki/View_%28database%29
http://en.wikipedia.org/wiki/Distributed_transaction_processing
http://en.wikipedia.org/wiki/Two-phase-commit_protocol
http://en.wikipedia.org/wiki/Storage_engine
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://en.wikipedia.org/wiki/Caching
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Microsoft_Jet_Database_Engine
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Microsoft_Office
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/RDBMS
http://en.wikipedia.org/wiki/Microsoft_Jet_Database_Engine
http://en.wikipedia.org/wiki/Database_trigger
http://en.wikipedia.org/wiki/Stored_procedure
http://en.wikipedia.org/wiki/RDBMS
http://en.wikipedia.org/wiki/Ad_hoc
http://en.wikipedia.org/wiki/Rapid_application_development

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

22

3.2. Testing Platform

The testing is carried out on a Dual-Processor, Intel Xeon E5649, 6x2 Cores, processor, clocked at 2.53GHz

with 32GB of random access memory (RAM) and 2TB of secondary storage capacity. The operating system is

MS Windows Server 2008, 64-bit.

3.3. Tester

The tester is a computer application developed using C#.NET under the .NET Framework 4.0. It performs two

tasks: The first is to automatically populate the database tables with 1,000,000 rows prior to test execution. The

second is to execute the actual SQL queries. Figure 1 shows the main GUI interface of the tester.

Figure 1 – Tester Interface

3.4. Benchmarking

The tester implements a built-in timer to measure the execution time in milliseconds, from the start of the

execution of a particular SQL query until it finishes up. Concerning memory consumption and utilization, the

MS Windows Task Manager (WTM) tool is used which is already shipped with all versions of MS Windows

operating systems [12]. Figure 2 shows the interface of the WTM tool

Figure 2 – WTM Main Interface

3.5. Database Design

Essentially, the database to be tested over all the different DBMSs comprises fifteen distinct relations or tables

associated together by means of relationships. It is a relational model database implemented under the different

five DBMSs under test. The database fits a business retail system. It includes a front end system for creating

invoices, receipts, and purchase orders and a back end system to manage the items stock. Figure 3 depicts the

logical design of the database under test.

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

23

Figure 3 - Logical Design of the Database

4. The Testing Process

Different SQL queries were executed over the different five DBMSs under test. In fact, these queries have

different level of complexity; they range from simple type to very complex type. It is worth noting that all five

databases are populated with dummy 1,000,000 records of data prior to starting the testing process.

Query #1

This is a very simple query whose task is to retrieve rows without any conditions or joins:

SELECT * FROM Item;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 18 ms +3% + 3MB + 1MB + 2

Oracle 23 ms +4% + 7MB + 1MB + 6

IBM DB2 18 ms +3% + 11MB + 1MB + 2

MySQL 19 ms +3% + 3MB + 1MB + 2

Ms Access 21 ms +2% + 2MB + 1MB + 1

Query #2

This query employs the use of sophisticated conditions conjoined with logical operators:

SELECT * FROM Invoice

WHERE Invoice.in_id > 50 AND Invoice.in_date > 1/1/2006 AND Invoice.in_date < 1/1/2007 AND

Invoice.in_description LIKE '%ohp%' AND Invoice.in_totalinletter LIKE '%USD' AND Invoice.in_total =

Invoice.in_totalafterdiscount AND Invoice.in_total <> 100 OR NOT Invoice.in_cu_id >= 5 AND Invoice.in_id

BETWEEN 1 AND 10000 OR Invoice.in_id > 49+1 AND Invoice.in_total+33 <> 5 AND Invoice.in_total = -

Invoice.in_totalafterdiscount * 2 ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 124 ms +9% + 3MB + 1MB + 2

Oracle 125 ms +14% + 7MB + 1MB + 6

IBM DB2 125 ms +12% + 11MB + 1MB + 2

MySQL 126 ms +12% + 3MB + 1MB + 2

Ms Access 170 ms +6% + 2MB + 1MB + 1

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

24

Query #3

This query is used to test the join operation between different tables:

SELECT Customer.cu_id , Invoice.in_id , InvoiceDetail.ind_qty , Item.it_serialnumber ,

Movement.mo_description , Movement_Details.mo_it_id , Users.us_id , Users.us_code ,

PurchaseOrder.po_description , Supplier.su_name FROM Customer , Invoice , InvoiceDetail , Item , Movement

, Movement_Details , Users , PurchaseOrder , Supplier

WHERE Supplier.su_name = "Mike" AND Customer.cu_id = Invoice.in_cu_id AND InvoiceDetail.ind_in_id =

Invoice.in_id AND InvoiceDetail.ind_it_id = Item.it_id AND Movement_Details.mod_mo_id =

Movement.mo_id AND Movement.mo_us_id = Users.us_id AND PurchaseOrder.po_us_id =Users.us_id AND

PurchaseOrder.po_us_id = Users.us_id AND PurchaseOrder.po_su_id AND Supplier.su_id ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 123 ms +3% + 33MB + 3MB + 2

Oracle 122 ms +4% + 37MB + 4MB + 6

IBM DB2 123 ms +3% + 43MB + 5MB + 2

MySQL 126 ms +3% + 27MB + 3MB + 2

Ms Access 231 ms +3% + 26MB + 3MB + 1

Query #4

This query is used to test the sorting operation for each DBMS:

SELECT Customer.cu_id , Customer.cu_name , Customer.cu_telephone , Customer.cu_fax ,

Customer.cu_email FROM Customer ORDER BY Customer.cu_id , Customer.cu_name DESC ,

Customer.cu_telephone DESC, Customer.cu_fax , Customer.cu_email DESC ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 429 ms +29% + 3MB + 1MB + 2

Oracle 431 ms +41% + 7MB + 1MB + 6

IBM DB2 423 ms +38% + 11MB + 1MB + 2

MySQL 428 ms +18% + 3MB + 1MB + 2

Ms Access 440 ms +17% + 2MB + 1MB + 1

Query #5

The purpose of this query is to test computational capabilities of the DBMSs by executing different arithmetic

functions:

SELECT SUM(Invoice.in_total) , AVG(Invoice.in_totalafterdiscount) , MAX(Invoice.in_total) ,

COUNT(Customer.cu_id) , SUM(InvoiceDetail.ind_qty) FROM Customer , Invoice , InvoiceDetail WHERE

Customer.cu_id = Invoice.in_cu_id AND Invoice.in_id = InvoiceDetail.ind_in_id GROUP BY Invoice.in_id ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 777 ms +54% + 13MB + 1MB + 2

Oracle 801 ms +70% + 16MB + 2MB + 6

IBM DB2 650 ms +55% + 21MB + 2MB + 2

MySQL 732 ms +35% + 13MB + 1MB + 2

Ms Access 1234 ms +33% + 10MB + 1MB + 1

Query #6

This query adds to the previous query conditions after the HAVING clause:

SELECT SUM(Invoice.in_total) , AVG(Invoice.in_totalafterdiscount) , MAX(Invoice.in_total) ,

COUNT(Customer.cu_id) , SUM(InvoiceDetail.ind_qty) FROM Customer , Invoice , InvoiceDetail

WHERE Customer.cu_id = Invoice.in_cu_id AND Invoice.in_id = InvoiceDetail.ind_in_id GROUP BY

Invoice.in_id HAVING COUNT(Invoice.in_id)>0 AND SUM(Invoice.in_total) =

AVG(Invoice,in_totalafterdiscount) ;

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

25

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 2304 ms +60% + 13MB + 1MB + 2

Oracle 2700 ms +77% + 16MB + 2MB + 6

IBM DB2 2001 ms +61% + 21MB + 2MB + 2

MySQL 2732 ms +46% + 13MB + 1MB + 2

Ms Access 3001 ms +41% + 10MB + 1MB + 1

Query #7

This query tests the capabilities of each DBMS when inner nested SELECTs is used:

SELECT Customer.cu_name FROM Customer WHERE Customer.cu_name = (SELECT Users.us_name

FROM Users WHERE Users.us_class = "administrator") AND Customer.cu_fax = (SELECT Supplier.su_fax

FROM Supplier WHERE Supplier.su_phone = "123456") AND Customer.cu_email = (SELECT

Supplier.su_email FROM Suppliers WHERE Supplier.su_address LIKE "%h%") ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 292 ms +3% + 17MB + 2MB + 2

Oracle 290 ms +4% + 24MB + 2MB + 6

IBM DB2 650 ms +3% + 27MB + 3MB + 2

MySQL 340 ms +3% + 19MB + 2MB + 2

Ms Access 698 ms +2% + 15MB + 1MB + 1

Query #8

Now comes the ultimate test which will combine all previous queries into a single atomic SQL query:

SELECT Customer.cu_id , Invoice.in_id , InvoiceDetail.ind_qty , Item.it_serialnumber ,

Movement.mo_description , Movement_Details.mo_it_id , Users.us_id , Users.us_code ,

PurchaseOrder.po_description , Supplier.su_name , SUM(Invoice.in_total) , AVG(Invoice.in_totalafterdiscount)

, MAX(Invoice.in_total), COUNT(Customer.cu_id) , SUM(InvoiceDetail.ind_qty) FROM Customer , Invoice ,

InvoiceDetail , Item , Movement , Movement_Details , Users , PurchaseOrder , Supplier WHERE Invoice.in_id

> 50 AND Invoice.in_date > 1/1/2006 AND Invoice.in_date < 1/1/2007 AND Invoice.in_description LIKE

'%ohp%' AND Invoice.in_totalinletter LIKE '%USD' AND Invoice.in_total = Invoice.in_totalafterdiscount

AND Invoice.in_total <> 100 OR NOT Invoice.in_cu_id >=5 AND Invoice.in_id BETWEEN 1 AND 10000

OR Invoice.in_id > 49+1 AND Customer.cu_name = (SELECT Users.us_name FROM Users WHERE

Users.us_class = "administrator") AND Customer.cu_fax = (SELECT Supplier.su_fax FROM Supplier WHERE

Supplier.su_phone = "123456") AND Customer.cu_id = Invoice.in_cu_id AND InvoiceDetail.ind_in_id =

Invoice.in_id AND InvoiceDetail.ind_it_id = Item.it_id AND Movement_Details.mod_mo_id =

Movement.mo_id AND Movement.mo_us_id = Users.us_id AND PurchaseOrder.po_us_id =Users.us_id AND

PurchaseOrder.po_us_id = Users.us_id AND PurchaseOrder.po_su_id AND Supplier.su_id ; ORDER BY

Customer.cu_id , Customer.cu_name DESC , Invoice.in_id DESC, Users.us_name , Invoice.in_description

DESC ; GROUP BY Customer.cu_id , Invoice.in_id , InvoiceDetail.ind_qty , Item.it_serialnumber ,

Movement.mo_description , Movement_Details.mo_it_id , Users.us_id , Users.us_code ,

PurchaseOrder.po_description , Supplier.su_name HAVING COUNT(Invoice.in_id)>0 AND

SUM(Invoice.in_total) = AVG(Invoice,in_totalafterdiscount) ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 6790 ms +99% + 41MB + 3MB + 2

Oracle 8100 ms +100% + 51MB + 4MB + 6

IBM DB2 6071 ms +99% + 59MB + 5MB + 2

MySQL 7520 ms +99% + 38MB + 3MB + 2

Ms Access 12678 ms +99% + 31MB + 3MB + 1

Query #9

This query tests the capabilities of the DBMSs under test to execute UPDATE statements with complicated

conditions:

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

26

UPDATE Item SET Item.it_price = Item.it_price * 0.1 AND Item.it_qtity = 10 AND Item.it_description = "TV"

WHERE Item.it_id > 10 AND Item.it_expirydate > 1/1/2007 AND Item.it_expirydate < 1/1/2008 AND

Item.it_manufacturer = "Philips" OR Item.it_manufacturer = "Sharp" OR Item.it_manufacturer = "Toshiba" ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 45 ms +7% + 3MB + 1MB + 2

Oracle 21 ms +11% + 7MB + 1MB + 6

IBM DB2 102 ms +8% + 11MB + 1MB + 2

MySQL 52 ms +8% + 3MB + 1MB + 2

Ms Access 201 ms +7% + 2MB + 1MB + 1

Query #10

This final query executes a DELETE query over the selected DBMSs:

DELETE FROM Invoice WHERE Invoice.in_date > 1/1/2006 AND Invoice.in_date < 1/1/2007 AND

Invoice.in_description LIKE '%vtt%' AND Invoice.in_totalinletter LIKE '%USD' AND Invoice.in_total =

Invoice.in_totalafterdiscount AND Invoice.in_ totalafterdiscount <> 33.1 OR NOT Invoice.in_cu_id >= 5 AND

Invoice.in_id BETWEEN 1 AND 10000 OR Invoice.in_id < 71/2 AND Invoice.in_total+33 <> 5 AND

Invoice.in_total = Invoice.in_totalafterdiscount – 112 ;

 Execution

Time

CPU

Utilization

Memory

Utilization

Virtual Memory

Utilization

Threads

Used

SQL Server 111 ms +7% + 3MB + 1MB + 2

Oracle 140 ms +11% + 7MB + 1MB + 6

IBM DB2 160 ms +8% + 11MB + 1MB + 2

MySQL 148 ms +8% + 3MB + 1MB + 2

Ms Access 182 ms +7% + 2MB + 1MB + 1

5. Results & Conclusions

The results of the testing are represented using graphical charts and statistical histograms. Obviously, there is no

ultimate winner. The charts clearly show that IBM DB2 is the fastest DBMS, however MS Access has lower

CPU utilization than other DBMSs and IBM DB2 is the most DBMS that consumes primary memory. Figure 4

represents the average execution time, Figure 5 represents the average CPU utilization, and Figure 6 represents

the average memory utilization.

Figure 4 - Average Execution Time

1101.3

1275.3

1032.3

1222.3

1885.6

0

200

400

600

800

1000

1200

1400

1600

1800

2000

DBMS

A
v
e
ra

g
e
 E

x
e
c
u

ti
o

n
 T

im
e

SQL Server

Oracle 10g

IBM DB2

MySQL 5.0

Ms Access

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

27

Figure 5 - Average CPU Utilization

Figure 6 – Average Memory Usage

Acknowledgment

This research was funded by the Lebanese Association for Computational Sciences (LACSC), Beirut, Lebanon,

under the “Evaluation & Performance Research Project – EPRP2012”.

References

[1] Jeffrey A. Hoffer, Mary Prescott, Heikki Topi, Modern Database Management, 9th ed, Prentice Hall, 2008.

[2] MS SQL Server 2008, http://www.microsoft.com/sqlserver/en/us/default.aspx

[3] Oracle Database 11g Release 2, http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html

[4] IBM DB2 Database, http://www-01.ibm.com/software/data/db2/

[5] MySQL Database 5.5, http://www.mysql.com/products/enterprise/database/

[6] Microsoft Access Home Page, http://office.microsoft.com/en-us/access/default.aspx

[7] Ray Rankins, Paul T. Bertucci, Chris Gallelli, Alex T. Silverstein, Microsoft SQL Server 2008 R2 Unleashed, Sams, 1st

ed, 2010.

[8] Kevin Loney, Oracle Database 11g The Complete Reference, McGraw-Hill Osborne Media, 1th ed., 2008.

[9] Paul Zikopoulos, George Baklarz, Leon Katsnelson, Leon Katsnelson, IBM DB2 9 New Features, McGraw-Hill

Osborne Media; 1th ed., 2007.

[10] Michael Kofler, The Definitive Guide to MySQL 5, Apress, 3rd ed, 2005.

[11] Jeff Conrad, John Viescas, Microsoft Access 2010 Inside Out, Microsoft Press, 2010.

[12] Mark Russinovich, David A. Solomon, Alex Ionescu , Windows Internals: Including Windows Server 2008 and

Windows Vista, 5th Edition, Microsoft Press, 2009.

27%

34%

29%

24%
22%

0%

5%

10%

15%

20%

25%

30%

35%

Average CPU

Utilization

SQL Server

Oracle 10g

IBM DB2

MySQL 5.0

MS Access

SQL Server,

13.2MB

Oracle 10g,

17.9MB

IBM DB2,

22.6MB

MySQL 5.0,

12.5MB

Ms Access,

10.2MB

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

28

Appendix A

This appendix lists the different DDL queries that were used to build and implement the relational database

along with its relationships and constraints.

DROP DATABASE IF EXISTS `uniDB`;

CREATE DATABASE ` uniDB ` /*!40100 DEFAULT CHARACTER SET latin1 */;

USE ` uniDB `;

CREATE TABLE `category` (

 `ca_id` int(11) NOT NULL auto_increment,

 `ca_description` varchar(50) default NULL,

 `ca_code` varchar(50) default NULL,

 PRIMARY KEY (`ca_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `customer` (

 `cu_id` int(11) NOT NULL auto_increment,

 `cu_name` varchar(50) default NULL,

 `cu_telephone` varchar(50) default NULL,

 `cu_fax` varchar(50) default NULL,

 `cu_email` varchar(50) default NULL,

 PRIMARY KEY (`cu_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `invoice` (

 `in_id` int(11) NOT NULL auto_increment,

 `in_cu_id` int(11) default NULL,

 `in_date` datetime default NULL,

 `in_description` char(50) default NULL,

 `in_total` int(11) default NULL,

 `in_discount` char(50) default NULL,

 `in_totalafterdiscount` int(11) default NULL,

 PRIMARY KEY (`in_id`),

 KEY `in_cu_id` (`in_cu_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 ROW_FORMAT=FIXED;

CREATE TABLE `invoicedetail` (

 `ind_id` int(11) NOT NULL auto_increment,

 `ind_in_id` int(11) default NULL,

 `ind_it_id` int(11) default NULL,

 `ind_qty` int(11) default NULL,

 `ind_total` float(53,10) default NULL,

 PRIMARY KEY (`ind_id`),

 KEY `ind_in_id` (`ind_in_id`),

 KEY `ind_it_id` (`ind_it_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `item` (

 `it_id` int(11) NOT NULL auto_increment,

 `it_ca_id` int(11) default NULL,

 `it_lo_id` int(11) default NULL,

 `it_serialnumber` char(50) default NULL,

 `it_code` char(50) default NULL,

 `it_barcode` char(10) default NULL,

 `it_expirydate` datetime default NULL,

 `it_description` char(50) default NULL,

 `it_manufacturer` char(50) default NULL,

 `it_price` float(53,10) default NULL,

 `it_qtity` int(11) default NULL,

 PRIMARY KEY (`it_id`),

 KEY `it_ca_id` (`it_ca_id`),

 KEY `it_lo_id` (`it_lo_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 ROW_FORMAT=FIXED;

CREATE TABLE `location` (

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

29

 `lo_id` int(11) NOT NULL auto_increment,

 `lo_description` varchar(50) default NULL,

 `lo_code` varchar(50) default NULL,

 PRIMARY KEY (`lo_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `movement` (

 `mo_id` int(11) NOT NULL auto_increment,

 `mo_us_id` int(11) default NULL,

 `mo_description` char(50) default NULL,

 `mo_date` datetime default NULL,

 PRIMARY KEY (`mo_id`),

 KEY `mo_us_id` (`mo_us_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 ROW_FORMAT=FIXED;

CREATE TABLE `movement_details` (

 `mod_id` int(11) NOT NULL auto_increment,

 `mod_mo_id` int(11) default NULL,

 `mod_it_id` int(11) default NULL,

 `mod_qtity` int(11) default NULL,

 `mod_fromlocation` char(50) default NULL,

 `mod_tolocation` char(50) default NULL,

 PRIMARY KEY (`mod_id`),

 KEY `mod_it_id` (`mod_it_id`),

 KEY `mod_mo_id` (`mod_mo_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 ROW_FORMAT=FIXED;

CREATE TABLE `purchaseorder` (

 `po_id` int(11) NOT NULL auto_increment,

 `po_us_id` int(11) default NULL,

 `po_su_id` int(11) default NULL,

 `po_description` char(50) default NULL,

 `po_dateofissue` datetime default NULL,

 `po_recievedate` datetime default NULL,

 `po_status` char(50) default NULL,

 PRIMARY KEY (`po_id`),

 KEY `po_us_id` (`po_us_id`),

 KEY `po_su_id` (`po_su_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 ROW_FORMAT=FIXED;

CREATE TABLE `purchaseorder_details` (

 `pod_id` int(11) NOT NULL auto_increment,

 `pod_po_id` int(11) default NULL,

 `pod_it_id` int(11) default NULL,

 `pod_qtity` int(11) default NULL,

 `pod_remainingqtity` int(11) default NULL,

 PRIMARY KEY (`pod_id`),

 KEY `pod_po_id` (`pod_po_id`),

 KEY `pod_it_id` (`pod_it_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `reciept` (

 `re_id` int(11) NOT NULL auto_increment,

 `re_cu_id` int(11) default NULL,

 `re_date` datetime default NULL,

 `re_amount` int(11) default NULL,

 `re_modeofpayment` varchar(50) default NULL,

 `re_checknumber` varchar(50) default NULL,

 `re_bank` varchar(50) default NULL,

 PRIMARY KEY (`re_id`),

 KEY `re_cu_id` (`re_cu_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `stockcount` (

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

30

 `st_id` int(11) NOT NULL auto_increment,

 `st_us_id` int(11) default NULL,

 `st_description` varchar(50) default NULL,

 `st_date` datetime default NULL,

 `st_status` varchar(50) default NULL,

 PRIMARY KEY (`st_id`),

 KEY `st_us_id` (`st_us_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `stockcount_details` (

 `std_id` int(11) NOT NULL auto_increment,

 `std_st_id` int(11) default NULL,

 `std_it_id` int(11) default NULL,

 `std_qtity` int(11) default NULL,

 `std_remainingqtity` int(11) default NULL,

 PRIMARY KEY (`std_id`),

 KEY `std_st_id` (`std_st_id`),

 KEY `std_it_id` (`std_it_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `supplier` (

 `su_id` int(11) NOT NULL auto_increment,

 `su_name` varchar(50) default NULL,

 `su_phone` varchar(50) default NULL,

 `su_address` varchar(50) default NULL,

 `su_fax` varchar(50) default NULL,

 `su_email` varchar(50) default NULL,

 PRIMARY KEY (`su_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `users` (

 `us_id` int(11) NOT NULL auto_increment,

 `us_code` varchar(50) default NULL,

 `us_name` varchar(50) default NULL,

 `us_password` varchar(50) default NULL,

 `us_class` varchar(50) default NULL,

 PRIMARY KEY (`us_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

ALTER TABLE `invoice`

 ADD FOREIGN KEY (`in_cu_id`) REFERENCES `customer` (`cu_id`);

ALTER TABLE `invoicedetail`

 ADD FOREIGN KEY (`ind_it_id`) REFERENCES `item` (`it_id`),

 ADD FOREIGN KEY (`ind_in_id`) REFERENCES `invoice` (`in_id`);

ALTER TABLE `item`

 ADD FOREIGN KEY (`it_ca_id`) REFERENCES `category` (`ca_id`),

 ADD FOREIGN KEY (`it_lo_id`) REFERENCES `location` (`lo_id`);

ALTER TABLE `movement`

 ADD FOREIGN KEY (`mo_us_id`) REFERENCES `users` (`us_id`);

ALTER TABLE `movement_details`

 ADD FOREIGN KEY (`mod_mo_id`) REFERENCES `movement` (`mo_id`),

 ADD FOREIGN KEY (`mod_it_id`) REFERENCES `item` (`it_id`);

ALTER TABLE `purchaseorder`

 ADD FOREIGN KEY (`po_su_id`) REFERENCES `supplier` (`su_id`),

 ADD FOREIGN KEY (`po_us_id`) REFERENCES `users` (`us_id`);

ALTER TABLE `purchaseorder_details`

 ADD FOREIGN KEY (`pod_po_id`) REFERENCES `purchaseorder` (`po_id`),

 JCSCR
 Journal of Computer
 Science & Research

Journal of Computer Science & Research (JCSCR) - ISSN 2227-328X

http://www.jcscr.com

Vol. 1, No. 1, Pages. 20-31, February 2012

© The Authors

31

 ADD FOREIGN KEY (`pod_it_id`) REFERENCES `item` (`it_id`);

ALTER TABLE `reciept`

 ADD FOREIGN KEY (`re_cu_id`) REFERENCES `customer` (`cu_id`);

ALTER TABLE `stockcount`

 ADD FOREIGN KEY (`st_us_id`) REFERENCES `users` (`us_id`);

ALTER TABLE `stockcount_details`

 ADD FOREIGN KEY (`std_st_id`) REFERENCES `stockcount` (`st_id`),

 ADD FOREIGN KEY (`std_it_id`) REFERENCES `item` (`it_id`);

